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Kivonat 

Kapu Tibor űrutazása után különösen aktuális a súlytalanság fizikai háttere. A műhelyen 

először a nehézségi erő, a súly és a súlytalanság fogalmait jártuk körbe. Olyan egyszerű 

kísérleteket is elvégeztünk, melyek már általános iskolában is bemutathatók, és jelentős 

motivációs hatásuk is van. Ezután a mikrogravitáció kifejezéssel foglalkoztunk. Elemeztük a 

szó jelentését, elvégeztünk néhány egyszerű számítást és megmutattuk, hogy e kifejezés 

használata félreértéseket, ellentmondásokat szülhet, és így gátolja a fizikai lényeg megértését. 

Végezetül megvizsgáltunk néhány olyan jelenséget, amelynél a súly fogalmának használata 

már indokolatlannak is tűnhet? A műhelyhez készült internetes anyagok itt[3] érhetők el. 

 

Nehézségi erő, tartóerő, súly, súlytalanság 

A szabadon eső alma g gyorsulással mozog függőlegesen lefelé, gyorsulását (alapvetően) a Föld 

gravitációs vonzása okozza. Ezt a hatást a nehézségi erővel jellemezzük (1. ábra), melynek 

nagysága: 

𝐹neh = 𝑚 ⋅ 𝑔.  

Amikor azonban az alma még a fán függött, akkor nem gyorsult, sőt nyugalomban volt. Ez csak 

úgy lehetséges, hogy a faág felfelé húzta az almát, ezt az erőt tartóerőnek hívjuk (2. ábra). 

2. ábra 3. ábra 1. ábra 



Nyugalom esetén a tartóerő és a nehézségi erő ugyanakkora, de ellentétes irányúak egymással. 

Érdemes megemlíteni, hogy a nehézségi erő és a tartóerő is ugyanarra a testre hat. 

A hatás–ellenhatás törvényének megfelelően azonban nem csak a faág húzza felfelé az almát, 

hanem az alma is húzza lefelé a faágat, ezt az erőt súlynak nevezzük. (3. ábra) A tartóerő és a 

súly ugyanakkora, de ellentétes irányúak egymással. Lényeges, hogy a tartóerő és a súly két 

különböző testre hat (az almára, illetve a faágra). 

Első kísérletként egy gyurmagolyót helyeztünk egy két végén alátámasztott műanyag vonalzó 

közepére, amelyre ezen a helyen előzőleg egy néhány milliméteres lyukat fúrtunk. A 

gyurmagolyó súlya alatt a vonalzó meghajlott, a tartóerő viszont kissé belapította a 

gyurmagolyó alját, illetve jól látszott a vonalzóra fúrt lyuk lenyomata is. Mindezeket 

összegezve definiáltuk a súly fogalmát: Azt az erőt, amelyet a test az alátámasztásra vagy a 

felfüggesztésre kifejt, súlynak nevezzük. 

E három erő jellemzőit az alábbi táblázatot elemezve foglaltuk össze. 

Neve Jele Iránya Mi fejti ki? Mire hat? 

Nehézségi erő Fneh le a gravitációs mező a testre 

Tartóerő Ft fel 
az alátámasztás 

a felfüggesztés 
a testre 

Súly G le a test 
az alátámasztásra 

a felfüggesztésre 

A továbbiakban a függőlegesen gyorsuló testek súlyát elemeztük. Fotók, továbbá a kollégák 

korábbi kísérleti tapasztalatai alapján megállapítottuk, hogy a felfelé gyorsuló testek súlya 

nagyobb, a lefelé gyorsulóké kisebb, mint nyugalmi állapotban (4–6. ábra).  

G = 1,5 N 

4. ábra 

G = 1,8 N 

a 

5. ábra 

G = 1,1 N 

a 

6. ábra 



A dinamika alapegyenletéből kiindulva először a felfelé 

gyorsuló test súlyát határoztuk meg (7. ábra). 

𝑚 ⋅ 𝑎 = 𝐹𝑡 − 𝑚 ⋅ 𝑔 

𝐹𝑡 = 𝑚 ⋅ 𝑔 + 𝑚 ⋅ 𝑎 

𝐹𝑡 = 𝑚 ⋅ (𝑔 + 𝑎) 

A hatás–ellenhatás törvénye miatt a felfelé gyorsuló test súlya 

ugyanekkora, azaz: 

𝐺 = 𝑚 ⋅ (𝑔 + 𝑎) 

 

 

 

A lefelé gyorsuló test súlya ugyancsak a dinamika 

alapegyenletéből kiindulva határozható meg (8. ábra). 

𝑚 ⋅ 𝑎 = 𝑚 ⋅ 𝑔 − 𝐹𝑡 

𝐹𝑡 = 𝑚 ⋅ 𝑔 − 𝑚 ⋅ 𝑎 

𝐹𝑡 = 𝑚 ⋅ (𝑔 − 𝑎) 

A hatás–ellenhatás törvénye miatt a lefelé gyorsuló test súlya 

ugyanekkora, azaz: 

𝐺 = 𝑚 ⋅ (𝑔 − 𝑎) 

 

 

 

A szabadon eső testre csak a nehézségi erő hat, ilyenkor a test 

lefelé gyorsul (9. ábra). Az előbbi összefüggés szerint: 

𝐺 = 𝑚 ⋅ (𝑔 − 𝑎) 

𝐺 = 𝑚 ⋅ (𝑔 − 𝑔) 

𝐺 = 𝑚 ⋅ 0 

𝐺 = 0 

A szabadon eső test tehát súlytalan. A hatás–ellenhatás 

törvénye miatt ugyanekkora a tartóerő is, azaz: 

𝐹𝑡 = 0 

 

a 

𝐹neh = 𝑚 ⋅ 𝑔 
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g 

𝐹neh = 𝑚 ⋅ 𝑔 
m 

9. ábra 



Ezt követően Galilei (10. ábra) súlytalansággal kapcsolatos gondolatait idéztük fel az 1638-ban 

megjelent Párbeszédek című művéből (Heinrich László fordításában): 

 „Érezzük a vállunkon a súlyt, midőn ellenszegülünk annak a 

mozgásnak, amelyre a bennünket nyomó súly törekszik, ám ha 

ugyanolyan sebességgel ereszkednénk alá, amellyel a szabadon 

eső teher a helyét változtatja, akkor ugyan mi módon tudna 

bennünket nyomni a súly? Nem látja-e, hogy ez ugyanaz, mintha 

kopjával akarnók megsebesíteni azt, aki előttünk szalad, velünk 

egyenlő vagy annál nagyobb sebességgel? Vonja hát le ebből azt 

a következtetést, miszerint szabad és természetes esés közben a 

kis kő nem fejt ki nyomást a nagy kőre, azaz nem növeli annak 

súlyát, ahogyan ez nyugalmi állapotban megtörténik.” 

A súlytalanság közvetlen szemléltetésére két kísérletet végeztünk el. Az első kísérletben egy 

saját készítésű űrhajómodellt használtam (11. ábra). Ennek fő alkatrésze egy deszkalapra 

csavarozott, L alakban meghajlított fűrészlap volt, amely a rá rögzített játékmaci („űrhajós”) 

súlya alatt lehajlott, és így zárt egy érintkezőt. Ez 

működtette a deszkalapra szerelt, két darab AAA 

méretű, 1,5 V-os elemről üzemelő zümmögőt. Ha 

ezt az eszközt (űrhajómodellt) elejtettük, akkor az 

„űrhajós” súlytalanná vált, így a fűrészlap 

visszanyerte eredeti alakját. Emiatt az áramkör 

megszakadt, és így a súlytalanságban a zümmögő 

elnémult. 

A második kísérletben egy kiegyensúlyozatlan kétkarú mérlegmodell szabadesését vizsgáltuk. 

A modell valójában egy műanyag vállfa volt, amelynek egyik végére egy tekercs 

szigetelőszalagot, a másikra egy tekercs celluxot függesztettem*. (A tekercsekből egy-egy 

darabot letekerve a vállfa végeire ragasztottam őket.) A vállfa kampóját a mutatóujjamra 

akasztva a vállfa elbillent, mivel a két tekercs súlya eltérő volt (12. ábra). 

 
* A leérkezéskor a szigetelőszalag és a cellux nem sérül, és a padlót sem károsítja. 

10. ábra 

11. ábra 



 

12. ábra 

 

13. ábra 

Ha azonban a vállfát vízszintes helyzetben tartottam (13. ábra), majd elejtettem, esés közben 

megtartotta vízszintes helyzetét. Szabadesés közben ugyanis mindkét tekercs súlytalan volt, így 

egyik sem húzta a mérlegmodell (vállfa) karjait. 

A súly, illetve a súlytalanság több fizikai jelenséget is befolyásol, a műhelyfoglalkozáson ezzel 

kapcsolatos kísérletek következtek. A vízszintes lapon meglökött test a súrlódás miatt 

hosszabb–rövidebb úton megáll. Ebben az esetben a test súlya nyomja a lapot (a lap pedig a 

tartóerővel nyomja a testet). Ha azonban a testet tartó lapot leejtjük, akkor esés közben a test 

súlya és a tartóerő is megszűnik, tehát a felületeket nem szorítja össze semmi. Ennek 

következtében megszűnik a súrlódás, így a test lassulás nélkül végigcsúszik a lapon. Ezt a 

jelenséget egy rövid YouTube videóval[4] szemléltettem.  

Ehhez kapcsolódóan bemutattam azt a közismert kísérletet is, melyben egy könyvcsomag alsó 

kötetébe helyezett papírlap a súrlódás miatt nem húzható ki a lapok közül (helyette a papírlap 

elszakad). Ha azonban a könyvcsomagot leejtjük, akkor a lap könnyedén kicsúszik. Esés 

közben ugyanis a könyvek súlya és a tartóerő is nulla, így nyomóerő hiányában a súrlódás is 

megszűnik. Papírlapként én mindig WC-papírt szoktam ehhez a kísérlethez használni, mert az 

nyugalmi helyzetben a perforáció mentén biztosan elszakad. (Ezt a kísérletet a 2012. évi győri 

fizikatanári ankéton már bemutattam, az erről készült videó a Videotoriumban is elérhető[5] .  

Mivel a hidrosztatikai nyomás a folyadék súlyából származik, ezért súlytalanságban nincs 

hidrosztatikai nyomás. Az ezzel kapcsolatos közismert kísérletet szintén videón néztük meg. A 

PET palackból a megfestett víz a palack oldalán fúrt lyukon kifolyik. Ha azonban a palackot 

leejtjük, akkor a súlytalanság miatt a hidrosztatikai nyomás is megszűnik, ezért esés közben 

nem folyik a víz. A bemutatott YouTube videó[6] lassítva mutatja meg a jelenséget. 

  



A felületi feszültségből származó erők általában lényegesen kisebbek, mint a folyadék súlya, 

így a nyugvó folyadék jellemzően az edény alján helyezkedik el, felveszi az edény alakját, 

szabad felszíne pedig vízszintes. Súlytalanságban azonban a folyadékot a felületi feszültség 

gömb alakúra húzza össze. Például a megolvasztott forrasztóón a páka alsó végén gyűlik össze 

(14. ábra), végül pedig lecseppen.  

 

14. ábra 

 

15. ábra 

A folyékony forrasztóón esés közben súlytalan, így a felületi feszültség gömb alakúra húzza 

össze. Ha a leeső óncsepp kb. 1 centiméter magasságból vízbe esik, akkor a vízben a forrasztóón 

lehűl és megszilárdul, így megőrzi gömb alakját (15. ábra). (Nagyobb magasságból leesve a 

vízbe csapódáskor a gömb alak eltorzul.) A kísérletet a Sörét forrasztóónból című FizKapu 

videón[7] mutattam be. (A 18. század végétől a 20. század közepéig ehhez hasonlóan gyártották 

a sörétes vadászfegyverekben használt sörétet). 

Végül egy önként jelentkező kolléga élhette át a súlytalanságot: feladata az volt, hogy ugorjon 

le egy székről. Mivel esés közben g gyorsulással mozgott lefelé, így rövid időre súlytalan volt. 

A kísérlet után a négyzetes úttörvény alapján kiszámítottuk, hogy mennyi ideig tartott a kolléga 

súlytalansága a kb. 0,5 méter magas székről történő leugráskor: 

𝑠 =
𝑔

2
⋅ 𝑡2                     ⟹                     𝑡 = √

2 ⋅ 𝑠

𝑔
= √

2 ⋅ 0,5 m

10 m s2⁄
= 0,3 s 

Huzamosabb súlytalansághoz nagyobb magasságból kellene leugrani, például 50 méter 

magasból kb. 3,2 másodperces súlytalanság lenne elérhető. Ez nagyjából megfelel egy 

17 szintes épület magasságának (17 x 3 m = 51 m). A 3,2 másodpercnyi (50 méteres) esés után 

azonban a sebesség kb. 32 m/s, azaz kb. 115 km/h lesz. Ez azonban még semmiféle károsodást 

nem okoz, hiszen a test végig súlytalan.  

  



A probléma a talajra érkezéskor jelentkezik, 

ugyanis ilyenkor a test felfelé gyorsul. Mivel 

ekkor rövid idő alatt nagy sebességváltozás 

történik, így nagy lesz a gyorsulás felfelé.  

A 𝐺 = 𝑚 ⋅ (𝑔 + 𝑎) összefüggésnek megfelelően 

tehát leérkezéskor nagy lesz a test súlya, és ez 

nagy becsapódási krátert hozhat létre, továbbá 

ugyanilyen nagy lesz a tartóerő is, ez pedig nagy 

deformációkat okozhat a testen (16. ábra). A súlytalanság nem veszélyes, de a talajra érkezés 

sérüléseket okozhat! 

Ezt a tényt három kísérlettel is szemléltettem, az első és a harmadik akár tanulókísérletként is 

elvégezhető. Az első kísérletben nagyjából 1 m magasról ejtettem le egy gyurmagolyót az 

asztalra. A tartóerő (és a súly) leérkezéskor lényegesen nagyobb volt, mint a korábban elvégzett 

(gyurmagolyó a vonalzón) kísérletben, és ennek eredménye jól látszott a gyurma sokkal 

nagyobb deformációján is. 

A második kísérletben egy tojást helyeztem az asztalra, de a tartóerő (és a súly) nyugalomban 

olyan kicsi, hogy nem okoz deformációt. Ha azonban a tojást kb. fél méter magasságból az 

asztalra ejtjük, akkor leérkezéskor a tartóerő (és a tojás súlya) lényegesen nagyobb, mint 

nyugalmi állapotban, ezért a tojás széttörik. (A leejtés előtt a tojást egy átlátszó műanyag 

zacskóba tettem, és a zacskót bekötöttem. A deformáció így azonnal látszik, mégsem kell utána 

takarítani.) 

A hegymászók és sziklamászók kötéllel biztosítják magukat, illetve egymást a lezuhanás ellen 

(17. ábra). Ennek modellezésére cérnára függesztettem egy tekercs szigetelőszalagot 

(hegymászó modell). Rögzítésként a cérnát néhányszor az egyik kezem mutatóujjára tekertem 

úgy, hogy a szigetelőszalag csak 10–15 centiméternyi cérnán lógott. A cérna ekkor, 

16. ábra 

17. ábra 18. ábra 



nyugalomban még elbírta a test súlyát. Ha a másik kezemmel a szigetelőszalagot a rögzítési 

pont fölé emeltem, majd elengedtem, akkor 20–30 centiméternyi esés után, a cérna 

megfeszülésekor a felfelé gyorsulás miatt megnövekedett súly még mindig kisebb volt, mint a 

cérna elszakadásához szükséges erő. Ha azonban a szigetelőszalagot ennél hosszabb, kb. 50–

60 centiméteres cérnára kötöttem, és így ismételtem meg a kísérletet, akkor a leérkezéskor a 

cérna elszakadt (18. ábra). A nagyobb esési magaság miatt ugyanis leérkezéskor nagyobb volt 

a sebesség, így nagyobb volt a felfelé gyorsulás is. Emiatt a súly is lényegesen nagyobb volt, 

mint kisebb cérnahossz (kötélhossz) esetén. Tanulság: Ha túl hosszú a kötél a kikötési pont és 

a mászó között, akkor zuhanáskor a mászó túl nagy sebességre gyorsulhat. Amikor végül a 

kötél megfeszül, a felfelé történő gyorsulás olyan nagy lehet, hogy a mászó súlya nagyobb lesz 

annál, mint amennyit a kötél elbír, és a biztosítókötél elszakad. 

Lényeges, hogy a test nemcsak a szabadesés közben súlytalan, hanem bármilyen hajítás közben 

is. (A hajítás nem szabadesés, mert hajításnál van a testnek kezdősebessége, szabadesésnél 

viszont nincs.) Ehhez a már megismert macis űrhajómodellt használtam. Egyrészt ferde 

hajítással eldobtam, majd elkaptam, másrészt az asztal lapjára helyezve meglöktem úgy, hogy 

az asztalon végigcsúszva vízszintes hajítással a padlóra essen. Mindkét kísérletben a zümmögő 

elnémult, jelezve, hogy hajítás közben is súlytalan volt a maci (űrhajós). A hajítás közbeni 

súlytalanságot szemlélteti az a fotó is, amelyen vadvízi evezősök láthatók (19. ábra). 

Körülöttük a fröccsenő vízcseppek mozgása mindig hajítás. A kinagyított képen (20. ábra) jól 

látható, hogy hajítás közben a súlytalanság miatt a cseppek gömb alakúak.

 

19. ábra 

 

20. ábra 



Mindezek alapján megállapítottuk, hogy ha a testre csak a nehézségi erő hat, akkor a test 

súlytalan. Ezt szemléltetik a 21–23. ábrák is. 

 

Mikrogravitáció (?) 

Az űrhajóban lévő (a külső környezettől elzárt) megfigyelő gyakorlatilag nem érzékeli a 

gravitációt. (Az elengedett test nem esik le, a meglökött test egyenes vonalú egyenletes mozgást 

végez.) Az űrhajó belsejében magára hagyott testeknél csak a földfelszíni gravitáció kb. 

milliomod részének megfelelő gyorsulások mérhetők (az űrhajóhoz viszonyítva). Emiatt a 

súlytalanság helyett gyakran használt kifejezés a mikrogravitáció. Azonban a mikro- a 

szóösszetételekben a vele összetett fogalom kicsiny voltát jelöli. A mikrogravitáció kifejezés 

tehát azt sugallja, hogy az űreszközre, és az abban lévő személyekre, testekre gyakorlatilag nem 

hat gravitáció. A Nemzetközi Űrállomás (ISS) azonban „csak” 418 km távolságban*, 

megközelítőleg körpályán kering a 6371 km 

sugarú Földtől. Az arányok jól láthatók a 

méretarányosan megszerkesztett 24. ábrán. 

Itt még jelentős a Föld által kifejtett gravitációs 

erő. Ezt a műhelyfoglalkozáson számításokkal is 

igazoltuk. 

Elsőként felírtuk a Nemzetközi Űrállomás 

mozgására a dinamika alapegyenletét: 

𝑚 ⋅ 𝑎 = Σ𝐹  

  

 
*  A magasság 10–20 kilométert változhat, a továbbiakban a cikk írásakor aktuális 418 km értéket használom. 

 

21. ábra 22. ábra 23. ábra 

24. ábra 



Az m tömegű űrállomás gyorsulása megegyezik a pálya magasságában mérhető g nehézségi 

gyorsulással, és az űrállomásra csak a gravitációs erő hat, ezért: 

𝑚 ⋅ 𝑔 = 𝛾 ⋅
𝑚 ⋅ 𝑀

𝑟2
 

Az egyenlet mindkét oldalát oszthatjuk az űrállomás tömegével, így a kapott összefüggés 

alapján az űrállomás magasságában mérhető g nehézségi gyorsulás kiszámítható. (A pálya 

sugara 𝑟 = 𝑅 + ℎ = 6789 km = 6 789 000 m.) 

𝑔 =
𝛾 ⋅ 𝑀

𝑟2
=

6,67 ⋅ 10−11 
N ⋅ m2

kg2 ⋅ 5,97 ⋅ 1024 kg

(6 789 000 m) 2
= 8,64 

m

s2
 

Ehhez az értékhez jutunk akkor is, ha a sebesség ismeretében kiszámítjuk az ISS centripetális 

gyorsulását. A centripetális gyorsulásra vonatkozó ismert összefüggés szerint: 

𝑎cp =
𝑣2

𝑟
 

A Nemzetközi Űrállomás aktuális sebessége és a földfelszíntől mért távolsága például a 

www.n2yo.com oldalról kérdezhető le. (A cikk írásakor a sebesség 7,66 km/s, a távolság 

418 km volt.) Ezeket az adatokat felhasználva: 

𝑎cp =
𝑣2

𝑟
=  

(7660 
m
s )

2

6 789 000 m
= 8,64

m

s2
 

Ez az érték megegyezik az előző számításban kapott értékkel, hiszen a Föld körül 

(megközelítőleg) körpályán keringő űrállomás centripetális gyorsulása azonos az űrállomás 

magasságában mérhető g nehézségi gyorsulással. (A centripetális erő pedig azonos a nehézségi 

erővel.) Ez nagyjából a Föld felszínén mérhető nehézségi gyorsulás 90%-a, tehát nem tekinthető 

mikrogravitációnak. 

Természetesen a Földtől távolabb a nehézségi erő (és vele a nehézségi gyorsulás) is kisebb lesz. 

Emberek eddig a Földtől eltávolodva csupán a Hold közelébe jutottak. Emiatt kiszámítottuk, 

hogy mekkora a 384 000 km távolságban (közelítőleg) körpályán keringő Hold centripetális 

gyorsulása. Kiindulásként a centripetális gyorsulást most a pálya sugara és a szögsebesség 

segítségével írtuk fel:  

𝑎cp = 𝜔2 ⋅ 𝑟 = (
2𝜋

𝑇
)

2

⋅ 𝑟 

A Hold keringési ideje 𝑇 = 27,32 nap ≈ 2 360 000 s, így  

𝑎cp = (
2𝜋

𝑇
)

2

⋅ 𝑟 = (
2𝜋

2 360 000 s
)

2

⋅ 384 000 000 m = 0,0027 
m

s2
 

http://www.n2yo.com/


A Hold centripetális gyorsulását a földi gravitáció okozza, a centripetális gyorsulás tehát azonos 

a Hold pályája mentén mérhető g nehézségi gyorsulással. Ez a gyorsulás így kiszámítható a már 

látott módon, a dinamika alapegyenlete alapján is: 

𝑚 ⋅ 𝑎 = Σ𝐹  

𝑚 ⋅ 𝑔 = 𝛾 ⋅
𝑚 ⋅ 𝑀

𝑟2
 

𝑔 =
𝛾 ⋅ 𝑀

𝑟2
=

6,67 ⋅ 10−11 
N ⋅ m2

kg2 ⋅ 5,97 ⋅ 1024 kg

(384 000 000 m) 2
= 0,0027 

m

s2
 

Ez természetesen megegyezik az előző számításban kapott értékkel. 

Ennek a nehézségi gyorsulásnak az érzékeltetésére kiszámítottuk, hogy mekkora nehézségi 

erővel hat a Föld(!) a Hold felszínén elhelyezkedő 1000 kg tömegű* testre (25. ábra). Az 

előzőkben kiszámított nehézségi gyorsulás 

alapján a keresett erő 𝐹 = 2,7 N. Ez az erő 

nagyjából ugyanakkora, mint egy csomag 

margarinra a Földön ható nehézségi erő, azaz 

𝐹′ = 2,5 N. Ennek alapján megállapíthatjuk, 

hogy a földi gravitáció még ilyen távolságban (a 

Holdnál) is jól érzékelhető. 

Mindezek miatt nem tartom célszerűnek a mikrogravitáció kifejezés használatát, helyette 

nyugodtan használjuk a súlytalanság fogalmát! 

• Összhangban van a nehézségi erő és a súly fogalmával. 

• Fizikai szempontból pontos, nem félrevezető. 

• Magyar kifejezés.  

 

A felfelé ható súly (?) 

A műhelyfoglalkozás (időhiány miatt tervezetten) itt véget ért, de a PowerPoint bemutató [3] 

még folytatódik, és végül sikerült ezt a részt is mindkét műhelyfoglalkozáson megtárgyalni. 

 
* Nagyságrendileg ekkora volt az első holdjármű, a szovjet Lunahod–1, illetve az amerikai Apolló program 

űrhajósai által használt Lunar Rover holdautók teljes tömege. 
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25. ábra 



A függőlegesen lefelé gyorsuló testek súlyának vizsgálatakor 

csak az 𝑎 ≤ 𝑔 eseteket vizsgáltuk, az 𝑎 > 𝑔 elemzése 

kimaradt. A test csak akkor mozoghat g-nél nagyobb 

gyorsulással lefelé, ha a nehézségi erővel együtt még egy 𝐹t erő 

gyorsítja ebbe az irányba (26. ábra). A dinamika alapegyenlete 

alapján:  

𝑚 ⋅ 𝑎 = 𝑚 ⋅ 𝑔 + 𝐹t 

𝐹t = 𝑚 ⋅ 𝑎 − 𝑚 ⋅ 𝑔 

𝐹t = 𝑚 ⋅ (𝑎 − 𝑔) 

A hatás–ellenhatás törvénye miatt a test G súlya ugyanekkora, 

azaz: 

𝐺 = 𝑚 ⋅ (𝑎 − 𝑔) 

A súly azonban a hatás–ellenhatás törvénye szerint az 𝐹t erővel ellentétes irányú, tehát ebben 

az esetben a súly felfelé hat. (Kérdés, hogy lehet-e ezt az erőt még súlynak nevezni? Erre még 

visszatérünk.) Ezt a meglepő tényt két kísérlettel és egy videóval szemléltettem. 

Egy pingponglabdát ejtettem az asztalra, majd az asztallapról visszapattanó labdát ismét az 

asztallap felé ütöttem a tenyeremmel. A labda leütésekor tehát a nehézségi erő is és a tenyerem 

is lefelé gyorsította a pingponglabdát, így gyorsulása nagyobb volt, mint g. A tenyerem lefelé 

nyomta a labdát, a lefelé gyorsuló labda által kifejtett erő viszont felfelé nyomta a tenyeremet, 

tehát a labda súlya felfelé, a tenyeremre hatott. 

A második kísérlet egy egyszerűen megvalósítható ördöghurok volt. Egy kb. 15 cm átmérőjű 

kerek, műanyag ételdobozba elhelyeztem egy kb. 1 cm átmérőjű acélgolyót, és a fedelével 

lezártam a dobozt. A dobozt kézben tartva úgy fordítottam, hogy az alaplapja függőleges lett. 

Ebben a helyzetben az ételdobozt egy függőleges síkban körkörösen úgy mozgattam, hogy a 

golyó függőleges síkban körmozgásba jött. 

Kellő fordulatszámnál a kézzel történő 

mozgatást megállítottam, de a tehetetlenség 

miatt a golyó a nyugvó ételdobozban továbbra is 

körpályán mozgott (27. ábra). A körpálya felső 

pontján a golyót a nehézségi erő és az ételdoboz 

palástja által kifejtett erő nyomta a körpálya 

középpontja felé. A golyó viszont ebben a 

helyzetben a doboz palástját nyomta felfelé, 

tehát a golyó súlya itt is felfelé hatott. 

a 

𝐹neh = 𝑚 ⋅ 𝑔 𝐹t 
G 

m 

26. ábra 

27. ábra 



Végezetül egy olyan ördöghurokról készült YouTube videót[8]  mutattam be, melyen egy 

kerékpáros tett megy egy függőleges kört egy alagút(?) belső hengerpalástján. A hurok felső 

pontján leállítva a videót megbeszéltük, hogy a kerékpár által a palástra kifejtett erő (súly?) itt 

is felfelé hat, míg a nehézségi erő és a palást által kifejtett erő a kör középpontja felé gyorsítja 

a kerékpárost (28. ábra). 

 

28. ábra 

 

29. ábra 

A videót olyan pillanatban is leállítottam, melynél a kerékpáros az alagút palástján éppen 

függőlegesen lefelé haladt (29. ábra). Belátható, hogy ebben a pontban a nehézségi erő 

függőlegesen lefelé gyorsítja a kerékpárost (érintő irányú erő – növeli a sebesség nagyságát). 

Az alagút palástja pedig vízszintesen a körpálya középpontja felé nyomja a kerékpárt 

(centripetális erő). A hatás–ellenhatás törvénye miatt viszont a kerékpár vízszintesen kifelé 

nyomja az alagút falát (vízszintes súly?). 

A fentiek azt jelzik, hogy a súly fogalma is csak korlátok között használható. Korlátot jelent 

például az, hogy a súlyt a pontszerű testekkel kapcsolatban definiáltuk. Kiterjedt testeknél 

viszont a súly nem egy pontban hat, például egy négylábú asztal négy helyen nyomja az 

alátámasztást. Mit értsünk súlyon, ha egy pontszerű test súrlódás nélkül csúszik egy lejtőn, 

illetve mit értsünk súlyon, ha a tapadási súrlódás miatt nyugalomban van a lejtőn? Mindez 

ugyan elsőre szokatlan lehet, de sok más fizikai fogalom is csak korlátok közt alkalmazható. 

Például a fénysugár (nagyon keskeny fénynyaláb) fogalma a geometriai optika keretein belül 

jól használható, de a fényelhajlás, a fénypolarizáció és az atomi fénykibocsátás–fényelnyelés 

leírására már nem megfelelő. 

Bár a műhelyen csak érintőlegesen került szóba, de érdemes megjegyezni, hogy a súly és 

súlytalanság fogalmát Magyarországon kívül általában másképpen értelmezik. A 

leggyakrabban súlynak nevezik a testre ható nehézségi erőt, és a nálunk használt súly fogalmát 

nem használják. Korábban nálunk is általános volt ez a szóhasználat, még klasszikus egyetemi 

tankönyvben[9] is. A jelenlegi magyarországi szóhasználat kialakítását Párkányi László, az 

ELTE kísérleti fizika tanszékének docense, a fizika-módszertani csoport vezetője 



kezdeményezte az 1966-os fizikatanári ankéton. Azt javasolta, hogy az akkoriban használt 

négyféle definíció közül a magyarországi fizikatanárok a ma is használt változatot alkalmazzák. 

Párkányi László Súly és súlytalanság című, a Fizikai Szemle 1967/2. számában megjelent írása 

itt[10]  érhető el. További információ erről kérdéskörről a Netfizika című weblapon 

itt[11]  található. Sajnos külföldön a súlynak és súlytalanságnak ez az értelmezése –minden 

előnye ellenére– végül nem terjedt el. 
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